3-parametric robot manipulator with intersecting axes
نویسندگان
چکیده
منابع مشابه
URK: Utah Robot Kit - A 3-Link Robot Manipulator Prototype
In designing robot manipulators, the interaction between several modules (S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes different types of information that are radically different but combined in a coordinated way. This paper describes the analysis and design of a 3-link robot manipulator prototype as part of a research projec...
متن کاملRotation Symmetry Axes and the Quality Index in a 3d Octahedral Parallel Robot Manipulator System
The geometry of a 3D octahedral parallel robot manipulator system is specified in terms of two rigid octahedral structures (the fixed and moving platforms) and six actuation legs. The symmetry of the system is exploited to determine the behaviour of (a new version of) the quality index for various motions. The main results are presented graphically.
متن کامل3D Surface-Tracking with a robot manipulator
Abstract This paper presents incremental research in Surface Tracking with a robot manipulator. Surface tracking is an important operation in self-teaching and exploratory tasks in unknown environments, and to cope with inaccurate workspace and environment modeling. The paper addresses the problem of 3D Surface Tracking in contact, where the main concern is the angle formed between the end-effe...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملIntersecting general parametric surfaces using bounding volumes
This paper describes a robust algorithm for computing all parts of the intersection curve of two general parametric surfaces. The algorithm follows a divide-and-conquer approach. Surfaces (and parts of them) are enclosed by tight parallel epipeds and axis aligned bounding boxes. If two bounding volumes intersect, one surface is split into two patches. This step is repeated recur-sively for both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1995
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1995.134284